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ABSTRACT
In this paper a new method for the parameterization of gen-
eral type-2 fuzzy membership functions. The proposed method
describes the methodology, equations and pseudo-code for build-
ing a set of general type-2 membership functions, which are a
combination of two Gaussian-type primary membership functions
(Gaussian with uncertain mean, and Gaussian with uncertain
standard deviation), with multiple combinations of secondary mem-
bership functions (Gaussian, doubleGaussian, general bell and trape-
zoidal). In addition, several application cases are used to illustrate
the advantages of the proposed parameterization of general type-2
fuzzy sets; where the membership functions are designed using the
parameterization approach and the general type-2 inference system
is approximated using the α-planes theory. Simulation results illus-
trate that the parameterization offers an efficient way to represent
these fuzzy sets. The main idea of the approach is to facilitate the
use of general type-2 fuzzy systems in real world applications. The
main contribution is a proposed new form of parameterizing general
type-2 fuzzy sets that simplifies the efficient design of this type of
sets.
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1. Introduction

Fuzzy logic provides the ability of modeling uncertainty, vagueness and imprecision
present in the vast majority of real world problems. It has found successful applications
in a wide variety of fields, such as decision making [1–4], control system design [5–8],
data classification [9–12], decision analysis [13–15], expert systems [16–18], time-series
prediction [19–21], robotics [22–24], pattern recognition [10,25,26] and so on.

With ongoing research being done on fuzzy sets (FSs), improvements have appeared
which best represent the true meaning of the original idea of linguistic variables, i.e.
imprecision and uncertainty in linguistic variables. This idea has sprung three main repre-
sentations of FSs, type-1 fuzzy sets (T1 FSs), interval type-2 fuzzy sets (IT2 FSs) and general
type-2 fuzzy sets (GT2 FSs). In this context, T1 FSs are the simplest form of linguistic variable
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representation, and as such can only characterize a certain degree of imprecision, or ambi-
guity. With IT2 FSs the notion of uncertainty was introduced in the form of intervals. These
intervals would ideally represent an infinite amount of embedded T1 FSs. Although more
computationally complex when compared to a T1 FSs, when inferred upon, they improve
the general fuzzymodel by beingmore resilient to external noise. IT2 FSs have been used in
multiple areas of applications, such as spatial analysis [27], mobile fieldworkforce area opti-
mization [28], analysis of failuremodes [29],wing rock sliding controller [30]. Theothermain
formsof representingFSs areGT2FSs,which similarly to the IT2 FSs also intrinsicallymanage
uncertainty. Where instead of representing uncertainty through an area, it is represented
by a volume. This form of uncertainty representation, in essence, is much more resilient to
noise than the IT2 FSs. Although research in this form of FS is fairly recent, some applica-
tions already exist, e.g. multi-central clustering [31], analysis of gene expression data [32],
control of a mobile robot [33], image processing systems [34].

Fuzzy logic is widely applied inmany areas because not only it can deal with incomplete
or uncertain data, but also because its tools have been simplified by using parameterized
FSs. This parameterization has been mainly used on the most common forms of mem-
bership functions, since the initial days of T1 FSs, e.g. Gaussian, Triangular, Rectangular;
with IT2 FSs the same forms of parameterization have been directly implemented, albeit
with intervals, since they can easily be transitioned to a higher type of FS is much easier
for researchers to implement, by staying with what is familiar. This fact is what has kept a
consistency throughout T1 and IT2FSs and has allowed researchers to perform direct com-
parisons between the performances of either Type of FS implementations. Even though
there are parameterized membership functions, which have existed and have been used
for a long time, new ones have been proposed, although not too widely used, but they
too can be easily be transitioned from a type-1 parameterization to a type-2 parameteri-
zation. In short, parameterization has kept the implementation and ongoing research on
fuzzy logic advancing, by letting researchers focus on the problem to model, and not on
how to represent their FSs.

Themain contributionof thepaper is theproposed approach for theparameterizationof
general type-2 fuzzy sets, where themembership function is formed fromgivenparameters
which represent the support of the primary membership function, such that all secondary
membership functions are automatically calculated in a continuous space. The importance
of a good parameterization is to provide better tools to help efficiently design type-2 fuzzy
systems. It is important to mention that this work is focused only in the general type-2
membership function parameterization. In this paper, the general type-2 inference system
is approximated using α-planes.

There exists a previous implementation of GT2 FS parameterization [35], where the
parameterization is for three types of primary membership functions (triangular, Gaussian
and trapezoidal). In comparison, the proposed parameterization in this paper describes
the process for building two Gaussian-type primary membership functions (Gaussian with
uncertain mean and Gaussian with uncertain standard deviation), with multiple combi-
nations of secondary membership functions (Gaussian, double Gaussian, general bell and
trapezoidal). This with the addition of two extra parameters, which give better control over
the amount of uncertainty in the support and the core of the parameterized GT2 mem-
bership function. Although enough description is also given so that other types of primary
membership functions and/or secondary membership functions could be easily adapted.
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The rest of the paper is organized as follows. Some basic concepts about GT2 FSs are
defined in Section 2; afterwards, the methodology, equations and pseudo-code to obtain
the general type-2 parameterization approach is presented in Section 3 and simulations
results for three different applications: Mackey–Glass chaotic series prediction, water tank
controller and thewave equation are presented in Section 4; themembership functions for
these applications aredesignedusing theparameterization approach and thegeneral type-
2 inference system is approximated using the α-planes theory. Finally, Section 5 concludes
the paper with some remarks about the contribution.

2. Background

A T1 FS has been the first and most popular fuzzy concept [36,37]; advances in research of
theory and practice around this area have made it possible to apply more complex forms
of fuzzy logic, such as IT2 and GT2 FS. In addition, GT2 FSs have outperformed the IT2 and
the T1 FSs in many real world applications. This is because a GT2 FS offers a way to model
higher levels of uncertainty because of additional degrees of freedom provided by its third
dimension; however, GT2 FSs are computationally more complex than T1 and IT2 FSs.

In the following sub-sections, we define some important concepts about GT2 FSs theory,
which are used in the remainder of this paper.

2.1. General Type-2 Fuzzy Sets

A general type-2 fuzzy set denoted as ˜̃A, on a universe of discourse X, can be expressed
by (1); where μ ˜̃A(x, u) is a 3D membership function (Figure 1), x ∈ X and u ∈ Jux [5,38],

˜̃A =
{(

(x, u),μ ˜̃A(x, u)
)

∀ x ∈ X , ∀ u ∈ Jux ⊆ [0, 1]
}
. (1)

Figure 1. Various elements of a general type-2 membership function.
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In (1), x is theprimary variable,udenotes the secondary variable, Jux represents an interval
between the lower and the upper membership functions, and the secondary membership
function is givenbyμ ˜̃A(x, u); where, 0 ≤ μ ˜̃A(x, u) ≤ 1. An alternative formof representation

of a GT2 fuzzy set is given in (2), where
∫∫

represents the union over the entire possible
values of x, u and μ ˜̃A(x, u), [38]

˜̃A =
∫
x∈X

∫
u∈Jux⊆[0,1]

μÃ(x, u)/(x, u), Jux⊆[0,1]. (2)

In general, there are two important representations for GT2 FSs in which are included
the vertical slice and the wavy slice representation. At each point of x, say x = x′, the 2-D
plane, whose axes are u and μ ˜̃A(x

′, u) is called the vertical slice of μ ˜̃A(x, u). Symbolically, it
is μ ˜̃A(x = x′, u), for x′ ∈ X and ∀u ∈ J′x ⊆ [0, 1], and it is described in (3),

μ ˜̃A(x = x′, u) =
∫
u∈Jx′

fx′(u)/uJx′ ⊆ [0, 1], (3)

where fx′(u) is the amplitude of the secondary membership function and fx′(u) ⊆ [0, 1].

Uncertainty in the primarymembership of a GT2 fuzzy set ˜̃A is represented by a bounded
region; therefore, the two-dimensional support of μ ˜̃A(x, u) is called the footprint of uncer-

tainty (FOU) of ˜̃A and is denoted by (4),

FOU
( ˜̃A

)
=

{
(x, u) ∈ X × [0, 1]μ ˜̃A(x, u) > 0

}
. (4)

FOU(
˜̃A) can also be expressed as the union of all primary memberships, i.e.

FOU
( ˜̃A

)
=

⋃
x∈X

Jux . (5)

2.2. General Type-2 Fuzzy Systems

The general type-2 Mamdani fuzzy systems contain five components: fuzzifier, rules, infer-
ence engine, type-reducer and defuzzifier; these are interconnected as shown in Figure 2.

The fuzzifier process maps crisp numbers into GT2 FS. Then, we need to activate rules
that are in terms of linguistic variables, which have fuzzy sets associated with them. The
rules can be provided by experts or can be extracted from numerical data. In either case,
the rules that we are interested in can be expressed as a collection of IF-THEN statements.
Consider a GT2 FSs having the fuzzy sets F̃ and G̃ with p inputs x1 ∈ X1, . . . , xp ∈ Xp, one
output y ∈ Y andM rules, where the lth rule is expressed in (6),

Rl : IF x1is F̃l1 and · · · and xp is F̃lp, THEN y is G̃l , where l = 1, . . . ,M. (6)

The fuzzy inference engine process of a GT2 FSs can be simplified into two main
operations, meet and join, as shown in (7) and (8),

μ ˜̃A(x) � μ ˜̃B(x) =
{[∫

u∈Jux

∫
u∈Jwx

fx (u) ∗ gx (w)/ (u ∨ w)

]}
, (7)
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Figure 2. General structure of type-2 fuzzy logic system.

μ ˜̃A(x) 
 μ ˜̃B(x) =
{[∫

u∈Jux

∫
u∈Jwx

fx (u) ∗ gx (w)/ (u ∧ w)

]}
. (8)

The centroid is one of the techniques used in the type-reducer process for the GT2
FSs. The centroid definition C ˜̃A of a GT2 FSs, introduced by Karnik and Mendel [39–41],
is expressed in (9); where θi is a combination associated to the secondary degree
fx1(θ1)∗̃ · · · ∗̃fxN(θN),

C ˜̃A =
∫

θ1∈Jx1
· · ·

∫
θN∈JxN

[
fx1 (θ1) ∗̃ · · · ∗̃fxN (θN)

] /∑N
i=1 xiθi∑N
i=1 θi

. (9)

2.3. α-Plane Representation of General Type-2 Fuzzy Sets

The GT2 FSs are computationally more complex than T1 and IT2 FSs; especially the defuzzi-
fier process, which is an extremely costly operation and is not practical for most real world
applications. Recently a range of alternative methods have been put forward to approxi-
mate the defuzzifier process; some of them are the α-planes and zSlices approaches [42].
These approximation techniques decompose the three-dimensional GT2 membership
function by using different kinds of cuts to obtain a collection of IT2 FSs.

The termα-planeswas introducedby Liu in 2008 [39]. Anα-plane for aGT2 FS, is denoted

by ˜̃Aα . It is the union of all primarymemberships functions of ˜̃Awhose secondary grades are
greater than or equal to α(0 ≤ α ≤ 1). The α-planes are represented in (10),

˜̃Aα =
{
(x, u),μ ˜̃A(x, u) ≥ α | ∀ x ∈ X , ∀ u ∈ [0, 1]

}
=

∫
∀x∈X

∫
∀u∈[0,1]

{(x, u) | fx (u) ≥ α} . (10)

The union of all α-planes is expressed in (11); where R ˜̃Aα
is one horizontal slice at level α.

˜̃A =
⋃

α∈[0,1]
R ˜̃Aα

. (11)
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3. On the Parameterization of a GT2 FS

For the proposed GT2 FS parameterization, primary membership function supports and
secondary membership functions must be first defined. Once defined, any possible com-
bination is possible.

3.1. PrimaryMembership Function Support Definitions

Twoexamples of primarymembership function supports arepresented,which areGaussian
membership functions with uncertain mean, and with uncertain standard deviation.

3.1.1. GaussianMembership Function with UncertainMean
This support type is formed via (12) and (13), where x ∈ X and X is theUniverse of Discourse,
m1 and m2 are the means of two T1 membership functions used to construct the GT2 FS
support, σ is the standard deviation used by both T1 membership functions. μ1(x) and
μ2(x) are the left and right membership functions, respectively, which will form the GT2 FS
support,

μ1(x) = exp

[
−1
2

(
x − m1

σ

)2
]
, (12)

μ2(x) = exp

[
−1
2

(
x − m2

σ

)2
]
. (13)

Once obtaining the left mean and right mean (μ1(x) and μ2(x)) Gaussian membership
functions, (14) and (15) are used to construct the support of the GT2 FS, where μ̄(x) and
μ(x) are upper and lower membership functions, respectively,

μ̄(x) =

⎧⎪⎪⎨
⎪⎪⎩

μ1(x), x < m1,

1, m1 ≤ x ≤ m2,

μ2(x), x > m2,

(14)

μ(x) =
⎧⎨
⎩

μ2(x), x ≤ m1 + m2

2
,

μ1(x), x >
m1 + m2

2
.

(15)

3.1.2. GaussianMembership Function with Uncertain Standard Deviation
This support type is formed by Equations (16) and (17), where μ̄(x) andμ(x) are upper and
lower membership functions, respectively, x ∈ X and X is the Universe of Discourse, σ1 and
σ2 are the standard deviations of two T1 membership functions used to construct the GT2
FS support, σ1 < σ2, andm is the mean used by both T1 membership functions.

μ(x) = exp

[
−1
2

(
x − m

σ1

)2
]
, (16)

μ̄(x) = exp

[
−1
2

(
x − m

σ2

)2
]
. (17)
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3.2. Baseline SecondaryMembership Function Definitions

As a baseline to construct any secondary membership function, a Gaussian membership
function is first required as a reference. This baseline secondary membership function
is linked to the chosen primary membership function type, either Gaussian with uncer-
tain mean, or Gaussian with uncertain standard deviation, and later used to obtain the
parameters required by the secondary membership functions.

3.2.1. Based on a Gaussian PrimaryMembership Function with UncertainMean
The process of obtaining a baseline secondary membership function when the primary
membership function is Gaussian with uncertain mean is performed via (18)–(20), where
x ∈ X , px is a secondary Gaussian membership function, m1 and m2 are the left and right
means of the primary membership function, σ is the standard deviation of the primary
membership function, δ is the spreadof the core (the core is representedby all valueswhere
μ(x) = 1),σu [43] is the standarddeviationof thebaseline secondaryGaussianmembership
function, and ε is a very small threshold, used to prevent a near zero standard deviation σ .

px = exp

[
−1
2

(
x − m

σ

)2
]
; where m = m1 + m2

2
, (18)

δ = μ̄(x) − μ(x), (19)

σμ = δ

2
√
3

+ ε. (20)

3.2.2. Based on a Gaussian PrimaryMembership Function with Uncertain Standard
Deviation
The process of obtaining a baseline secondary membership function when the pri-
mary membership function is Gaussian with uncertain standard deviation is described
by (21)–(23), where x ∈ X , px is a secondary Gaussian membership function, σ1 and σ2 are
the inner and outer standard deviations of the primarymembership function, σ is the stan-
dard deviation of the primary membership function, δ is the spread of the core (the core
is represented by all values where μ(x) = 1), σu [43] is the standard deviation of the sec-
ondary Gaussian membership function, ε is a very small threshold, used to prevent a near
zero standard deviation σ .

px = exp

[
−1
2

(
x − m

σ

)2
]
; where σ = σ1 + σ2

2
, (21)

δ = μ̄(x) − μ(x), (22)

σμ = δ

2
√
3

+ ε. (23)

3.3. SecondaryMembership Function Definitions

The secondary membership function can be chosen in accordance to the desired uncer-
tainty form of representation. This paper introduces the use of four different secondary
membership functions: Gaussian, double Gaussian, generally bell-shaped and trapezoidal.
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3.3.1. GaussianMembership Function
TheGaussian secondarymembership function, shown in Figure 3 is obtained via (25),where
ũ(x, u) is a membership function which takes on the parameters x ∈ X on the Universe of
Discourse, and u ∈ U such that u ∈ Jx ⊆ [0, 1]. Here px is obtained from the baseline Gaus-
sian secondary membership function by (18) or (21), depending on the chosen primary
membership function; and σu is obtained via (24).

σμ = (1 − ρ)
δ

2
√
3

+ ε, (24)

μ̃ (x, u) = exp

[
−1
2

(
u − px

σu

)2
]
. (25)

3.3.2. Double GaussianMembership Function
Double Gaussian secondary membership function parameters are defined by (26)–(29),
where m1 and σ1 are the mean and standard deviation for the left Gaussian membership
function,m2 and σ2 are the mean and standard deviation for the right Gaussian member-
ship function. Both sets of parameters are affectedby the fractions of uncertainty ofλ andρ,
where the core and support are affected respectively, which ultimately affect the amount of
uncertainty which is desired, where values of zero represent no change in uncertainty, and
the value of 1 represents 100%extra uncertainty. These parameters, px and σu, are obtained
by (18) and (20), or (21) and (23), depending on the chosen primary membership function.

m1 = px (1 − λ) , (26)

Figure 3. Sample secondary Gaussian membership function.
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Figure 4. Sample secondary double Gaussian membership function.

σ1 = σu (1 − ρ) , (27)

m2 = px (1 + λ) , (28)

σ2 = σu (1 + ρ) . (29)

The double Gaussian secondary membership function, shown in Figure 4 is calculated
via (30), where ũ(x, u) is a membership function which takes on the parameters x ∈ X on
the Universe of Discourse, and u ∈ U such that u ∈ Jx ⊆ [0, 1],

μ̃ (x, u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp

[
−1
2

(
u − m1

σ1

)2
]
, u ≤ c1,

1, c1 ≤ u ≤ c2,

exp

[
−1
2

(
u − m2

σ2

)2
]
, u ≥ c1.

(30)

3.3.3. General Bell-ShapedMembership Function
The general bell-shaped secondaryMF, shown in Figure 5 is obtained via (31), where ũ(x, u)
is a membership function which takes on the parameters x ∈ X on the Universe of Dis-
course, and u ∈ U such that u ∈ Jx ⊆ [0, 1]. Here px and σu are the obtained parameters
from the baseline Gaussian secondary membership function, and bu controls the slope of
themembership function. These parameters are obtained by (18) and (20), or (21) and (23),
depending on the chosen primary membership function,

μ̃ (x, u) = 1

1 +
[(

u−px
σu

)2]bu . (31)



40 J. R. CASTRO ET AL.

Figure 5. Sample general bell-shaped membership function.

3.3.4. Trapezoidal Membership Function
The previously shown secondary membership functions have relied on a baseline sec-
ondary Gaussian membership function, as expressed by (18) and (20), or (21) and (23).
But for a trapezoidal secondary membership function, these equations are not used;
instead, (32) and (33) define the required modifiers for the membership function. The
trapezoidal secondary membership function parameters are obtained through (34)–(37).
Here aμ, bμ, cμ and dμ are the used parameters to construct the trapezoidal secondary
membership function andwl in (35) andwr in (36) are the left and right width,

δl = px − μ(x), (32)

δr = μ̄(x) − px , (33)

aμ = μ(x), (34)

bμ = px − wlδl , (35)

cμ = px + wrδr , (36)

dμ = μ̄(x). (37)

The trapezoidal secondary membership function, shown in Figure 6 is obtained via
(38), where ũ(x, u) is a membership function which takes on the parameters x ∈ X on the
Universe of Discourse, and u ∈ U such that u ∈ Jx ⊆ [0, 1]. Here au, bu, cu and du are the
obtained by using (34)–(37),

μ̃ (x, u) = max
(
min

(
u − aμ

bμ − aμ

, 1,
dμ − u

dμ − cμ

)
, 0

)
. (38)



FUZZY INFORMATION AND ENGINEERING 41

Figure 6. Sample secondary trapezoidal membership function.

3.4. GT2 FS Parameterization

Parameterization is performed in an algorithmic manner, where depending on the chosen
primarymembership functionand secondarymembership function, different equations are
combined in order to construct the final GT2 membership function. Also, depending on
the selected secondary membership function it may or may not require an intermediate
baseline secondary membership function.

3.4.1. Gaussian PrimaryMembership Function with UncertainMean and Double
Gaussian SecondaryMembership Function
This GT2 membership function, defined as ˜̃μ(x, u), is shown in (39) in functional form,
where ‘gaussmgauss2type2’ stands for Gaussian primarymembership functionwith uncer-
tain mean and double Gaussian secondary membership function. It requires 5 parameters
{σ ,m1,m2, λ, ρ}where σ is the standard deviation of the primarymembership function,m1

and m2 are the left and right means of the Gaussian membership function with uncertain
mean, λ and ρ are fractions of uncertainty, which affect the core and support, respectively,
of the secondarymembership function. In Figure7 this constructedGT2FS canbevisualized
from various angles,

˜̃μ (x, u) = gaussmgauss2type2 (x, u, [σ ,m1,m2, λ, ρ]) . (39)

The following algorithm summarizes the sequence of equations, which construct this
GT2 membership function.

Procedure gaussmgauss2type2(x, u, [σ ,m1,m2, λ, ρ]):

(1) Calculate the primary membership function support via (12)–(15).
(2) Calculate baseline secondary membership function via (18)–(20).
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Figure 7. Sample GT2 FS constructed from a Gaussian primary membership function with uncertain
mean and double Gaussian secondary membership function. (a) is a top view and (b) an isometric view.

(3) Calculate secondary membership function parameters via (26)–(29).
(4) Calculate secondary membership function via (30).
(5) Return ˜̃μ(x, u).

3.4.2. Gaussian PrimaryMembership Function with UncertainMean and Gaussian
SecondaryMembership Function
This GT2 membership function, defined as ˜̃μ(x, u), is shown in (40) in functional form,
where ‘gaussmgausstype2’ stands for aGaussian primarymembership functionwith uncer-
tain mean and Gaussian secondary membership function. It requires four parameters
{σ ,m1,m2, ρ} where σ is the standard deviation of the primary membership function, m1

and m2 are the left and right means of the Gaussian membership function with uncer-
tain mean, and ρ is a fraction of uncertainty which affects the support of the secondary
membership function. In Figure 8 this constructed GT2 FS can be visualized from various

Figure 8. Sample GT2 FS constructed from a Gaussian primary membership function with uncer-
tain mean and Gaussian secondary membership function. (a) is a top view and (b) an isometric
view.
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angles.

˜̃μ (x, u) = gaussmgausstype2 (x, u, [σ ,m1,m2, ρ]) . (40)

The following algorithm summarizes the sequence of equations, which construct this
GT2 membership function.

Procedure gaussmgausstype2(x, u, [σ ,m1,m2, ρ]):

(1) Calculate the primary membership function support via (12)–(15).
(2) Calculate secondary membership function parameters via (18), (19) and (24).
(3) Calculate secondary membership function via (25).
(4) Return ˜̃μ(x, u).

3.4.3. Gaussian PrimaryMembership Function with UncertainMean and General
Bell-shaped SecondaryMembership Function
This GT2 membership function, defined as ˜̃μ(x, u), is shown in (41) in functional form,
where ‘gaussmgbelltype2’ stands for Gaussian primary membership function with uncer-
tainmean andgeneral bell-shaped secondarymembership function. It requires four param-
eters {σ ,m1,m2, bu}whereσ is the standarddeviationof theprimarymembership function,
m1 andm2 are the left and rightmeansof theGaussianmembership functionwithuncertain
meanandbu controls the slopeof thegeneral bell-shaped secondarymembership function.
In Figure 9 this constructed GT2 FS can be visualized from various angles,

μ̃ (x, u) = gaussmgbelltype2
(
x, u,

[
σ ,m1,m2, bu

])
. (41)

The following algorithm summarizes the sequence of equations, which constructs this
GT2 membership function.

Procedure gaussmgbelltype2(x, u, [σ ,m1,m2, bu]):

(1) Calculate the primary membership function support via (12)–(15).
(2) Calculate secondary membership function parameters via (18)–(20).

Figure 9. Sample GT2 FS constructed from a Gaussian primary membership function with uncertain
mean and general bell-shaped secondary membership function. (a) is a top view and (b) an isometric
view.
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(3) Calculate secondary membership function via (31).
(4) Return ˜̃μ(x, u).

3.4.4. Gaussian PrimaryMembership Function with UncertainMean and Trapezoidal
SecondaryMembership Function
This GT2 membership function, defined as ˜̃μ(x, u), is shown in (42) in functional form,
where ‘gaussmtraptype2’ stands for Gaussian primary membership function with uncer-
tain mean and trapezoidal secondary membership function. It requires five parameters
{σ ,m1,m2,wl ,wr} where σ is the standard deviation of the primary membership func-
tion, m1 and m2 are the left and right means of the Gaussian membership function with
uncertain mean, wl and wr provide the width of the core of the trapezoidal secondary
membership function. In Figure 10 this constructed GT2 FS can be visualized from various
angles,

˜̃μ (x, u) = gaussmtraptype2 (x, u, [σ ,m1,m2,wl ,wr]) . (42)

The following algorithm summarizes the sequence of equations, which construct this
GT2 membership function.

Procedure gaussmtraptype2(x, u, [σ ,m1,m2,wl ,wr]):

(1) Calculate the primary membership function support via (12)–(15).
(2) Calculate secondary membership function parameters via (32)–(37).
(3) Calculate secondary membership function via (38).
(4) Return ˜̃μ(x, u).

3.4.5. Gaussian PrimaryMembership Function with Uncertain Standard Deviation
and Double Gaussian SecondaryMembership Function
This GT2membership function, defined as ˜̃μ(x, u), is shown in (43) in functional form,where
‘gausssgauss2type2’ stands for Gaussian primary membership function with uncertain
standard deviation and double Gaussian secondary membership function. It requires five

Figure 10. Sample GT2 FS constructed from a Gaussian primary membership function with uncer-
tain mean and trapezoidal secondary membership function. (a) is a top view and (b) an isometric
view.
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Figure 11. Sample GT2 FS constructed from a Gaussian primary membership function with uncertain
standard deviation and double Gaussian secondary membership function. (a) is a top view and (b) an
isometric view.

parameters {σ1, σ2,m, λ, ρ}where σ1 and σ2 are the inner and outer standard deviations of
the primary membership function with uncertain standard deviation,m is the mean of the
primary Gaussian membership function, λ and ρ are fractions of uncertainty which affect
the core and support, respectively, of the secondarymembership function. In Figure 11 this
constructed GT2 FS can be visualized from various angles,

˜̃μ (x, u) = gausssgauss2type2 (x, u, [σ1, σ2,m, λ, ρ]) . (43)

The following algorithm summarizes the sequence of equations, which constructs this
GT2 membership function.

Procedure gausssgauss2type2(x, u, [σ1, σ2,m, λ, ρ]):

(1) Calculate the primary membership function support via (16) and (17).
(2) Calculate baseline secondary membership function via (21)–(23).
(3) Calculate secondary membership function parameters via (26)–(29).
(4) Calculate secondary membership function via (30).
(5) Return ˜̃μ(x, u).

3.4.6. Gaussian PrimaryMembership Function with Uncertain Standard Deviation
and Gaussian SecondaryMembership Function
This GT2membership function, defined as ˜̃μ(x, u), is shown in (44) in functional form,where
‘gausssgausstype2’ stands for Gaussian primary membership function with uncertain stan-
dard deviation and Gaussian secondary membership function. It requires four parameters
{σ1, σ2,m, ρ} where σ1 and σ2 are the inner and outer standard deviations of the primary
membership function with uncertain standard deviation, m is the mean of the primary
membership function, ρ is a fraction of uncertainty which affects the support. In Figure 12
this constructed GT2 FS can be visualized from various angles,

˜̃μ (x, u) = gausssgausstype2 (x, u, [σ1, σ2,m, ρ]) . (44)
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Figure 12. Sample GT2 FS constructed from a Gaussian primary membership function with uncertain
standard deviation and aGaussian secondarymembership function. (a) is a top view and (b) an isometric
view.

The following algorithm summarizes the sequence of equations, which constructs this
GT2 membership function.

Procedure gausssgausstype2(x, u, [σ ,m1,m2, ρ]):

(1) Calculate the primary membership function support via (16) and (17).
(2) Calculate secondary membership function parameters via (21), (22) and (24).
(3) Calculate secondary membership function via (25).
(4) Return ˜̃μ(x, u).

3.4.7. Gaussian PrimaryMembership Function with Uncertain Standard Deviation
and General Bell-Shaped SecondaryMembership Function
This GT2membership function, defined as ˜̃μ(x, u), is shown in (45) in functional form,where
‘gausssgbelltype2’ stands for Gaussian primary membership function with uncertain stan-
dard deviation and general bell-shaped secondary membership function. It requires four
parameters {σ1, σ2,m, bu} where σ1 and σ2 are the inner and outer standard deviations of
the Gaussian primary membership function with uncertain standard deviation, m is the
mean of the primary membership function, and bu controls the slope of the general bell-
shaped secondary membership function. In Figure 13(a,b) this constructed GT2 FS can be
visualized from various angles,

˜̃μ (x, u) = gausssgbelltype2
(
x, u,

[
σ1, σ2,m, bu

])
. (45)

The following algorithm summarizes the sequence of equations, which constructs this
GT2 membership function.

Procedure gausssgbelltype2(x, u, [σ1, σ2,m, bu]):

(1) Calculate the primary membership function support via (16) and (17).
(2) Calculate secondary membership function parameters via (21)–(23).
(3) Calculate secondary membership function via (31).
(4) Return ˜̃μ(x, u).
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Figure 13. Sample GT2 FS constructed from a Gaussian primary membership function with uncertain
standard deviation and general bell-shaped secondarymembership function. (a) is a top view and (b) an
isometric view.

3.4.8. Gaussian PrimaryMembership Function with Uncertain Standard Deviation
and Trapezoidal SecondaryMembership Function
This GT2membership function, defined as ˜̃μ(x, u), is shown in (46) in functional form,where
‘gaussstraptype2’ stands for Gaussian primary membership function with uncertain stan-
dard deviation and trapezoidal secondarymembership function. It requires five parameters
{σ1, σ2,m,wl ,wr}where σ1 and σ2 are the inner and outer standard deviations of the Gaus-
sian primary membership function with uncertain standard deviation,m is themean of the
primarymembership function,wl andwr define thewidth of the core of the trapezoidal sec-
ondary membership function. In Figure 14 this constructed GT2 FS can be visualized from
various angles,

˜̃μ (x, u) = gaussstraptype2 (x, u, [σ1, σ2,m,wl ,wr]) . (46)

The following algorithm summarizes the sequence of equations, which constructs this
GT2 membership function.

Figure 14. Sample GT2 FS constructed from a Gaussian primary membership function with uncertain
standarddeviation and trapezoidal secondarymembership function. (a) is a top viewand (b) an isometric
view.
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Procedure gaussstraptype2(x, u, [σ1, σ2,m,wl ,wr]):

(1) Calculate the primary membership function support via (16) and (17).
(2) Calculate secondary membership function parameters via (21)–(23).
(3) Calculate secondary membership function via (31).
(4) Return ˜̃μ(x, u).

4. Methodology and Results

In this section, we present the methodology and simulation results for three different
applications: Mackey–Glass chaotic series prediction, water tank controller and the wave
equation approximation. The main goal is to analyze the performance of these systems
when the parameterization model of GT2 membership functions proposed in Section 3 is
applied; since this is the main contribution of this paper. The applications were designed
using different types of membership functions and the GT2 fuzzy inference system was
approximated using the α-plane theory.

In order to evaluate the accuracy of the proposed fuzzy systems, the Root Mean Square
Error (RMSE) metric is used; additionally, the results are compared with IT2 FSs. The IT2 FSs
are designed under the same conditions than the GT2 FSs, as the number of antecedents,
consequents and fuzzy rules, type of MFs, type inference and type-reduction.

It is important to mention that the idea to compare the results achieved by the GT2 FSs
against the IT2 FSs is only to show that the proposed parameterization method is a good
technique,which canbe applied to improve results on any application. Theobtained results
are described in detail below.

4.1. Mackey–Glass Time Series

The Mackey–Glass Time Series is a chaotic time series that was proposed by Mackey and
Glass [44]. The prediction of future values of these time series is a benchmark problem,
which is used in this paper as an application. The time series is obtained from the follow-
ing non-linear equation expressed in (47). In the case where τ > 17, it is known to exhibit
chaotic behavior,

x′(t) = 0.2x (t − τ)

1 + x10 (t − τ)
− 0.1x(t). (47)

The fourth-order Runge–Kutta method is used to obtain the numerical solutions to the
equation. From the Mackey–Glass time series x(t), we extracted 1000 input-output data
points from t=124 to t=1123, with an initial condition x(0) = 1.2, τ = 17, and time step
= 0.1 where x(t) is derived for 0 ≤ t ≤ 1200 with an initial condition pairs of the following
format

[x (t − 24) , x (t − 18) , x (t − 12) , x (t − 6) ; x(t)] .

The 1000 data points used in the prediction problem are presented in Figure 15. The
first 500 data points are used for training the fuzzy predictor while the remaining 500 data
points are used for validating the prediction performance of the proposed model.
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Figure 15. Mackey–Glass Chaotic Time Series.

4.1.1. Mackey–Glass Time Series Using GT2 FSs
The GT2 fuzzy system predictor for theMackey–Glass chaotic time series is a Singleton Tak-
agi–Sugeno fuzzy model. The fuzzy model has four inputs and one output; each input is
granulated into two membership functions, which are labeled with low and high linguis-
tic values, as shown in Figure 16. The input membership functions are Gaussian primary
membership functions with uncertain standard deviation and general bell-shaped sec-
ondary membership function (gausssgbelltype2) and the parameterization for this type of
membership function is expressed in (45).

The GT2 fuzzy predictor is designed using 16 fuzzy rules, which are characterized by the
number of antecedents fuzzy sets combined with the consequents fuzzy sets.

4.1.2. Mackey–Glass Time-Series Results
In the first experiment we considered theMackey–Glass time-series predictionwith τ = 17
and in a noiseless situation, using GT2 FS and IT2 FS. In Table 1, we can note that the RMSE

Figure 16. GT2 membership functions for the input X1.
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Table 1. Thenoise-freeMackey–Glass chaotic time-series prediction.

Fuzzy system RMSE τ = 17

GT2 FSs 0.0704
IT2 FSs 0.0943

Table 2. Mackey–Glass chaotic time-series prediction corrupted by uniformly-distributed stationary
additive noise.

RMSE

Fuzzy system SNR (0 dB) SNR (10 dB) SNR (20 dB) SNR (30 dB) SNR (40 dB)

GT2FSs 0.4848 0.1503 0.0803 0.0708 0.0706
IT2FSs 0.5332 0.1678 0.1024 0.095 0.0945

Figure 17. Mackey–Glass time-series prediction for τ = 17 corrupted with noise using IT2 and GT2 FS.

achieved by the GT2 FS is better than the IT2 FSs with a value of 0.0704, which improved
the fuzzy prediction system.

In the second experiment, the Mackey–Glass time-series prediction for τ = 17 is now
corrupted with noise levels, we add values of 0 dB, 10 dB, 20 dB and 30 dB of SNR (signal
noise ratio) as a high source of uncertainty. In this case, Table 2 shows the RMSE achieved
by using GT2 FS and IT2 FS when the different noise levels are applied. In Figure 17 we can
note that GT2 FS performs better than IT2 FS. This is due to the fact that GT2 FS can handle
uncertainty better and thus increase the learning ability.

4.2. Water Tank Controller

The water tank is a benchmark problem, which is used for controlling the water level in a
tank [45]. In designing the control system, the valve opening size and speed are determined
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according to the level and rate of water input flow. The controller has to be able to set the
valve at the correct position tomaintain the liquid level accurately for a given desired value.

To evaluate the valve opening in a precise way, a GT2 Fuzzy controller is implemented
in this test.

4.2.1. Water Tank Controller Using GT2 FSs
The water tank GT2 fuzzy system has two input variables, the first one is called Level, which
has three membership functions with the low, okay and high linguistic values, as shown
in Figure 18. The second input variable is called Rate with three membership functions,
which are represented by the linguistic values of negative, good and positive, illustrated in
Figure 18.

The GT2 fuzzy system has one output labeled as Valve, which has fivemembership func-
tions with the closefast, closeslow, nochange, openslow and openfast linguistic values, as
shown in Figure 19.

The input and output membership functions are defined by Gaussian primary mem-
bership functions with uncertain mean and Gaussian secondary membership functions
(gaussmgausstype2); the parameterization for these membership functions are expressed
in (40).

For modeling the knowledge about the problem with the MamdaniGT2 fuzzy system,
we consider five fuzzy rules, which are detailed below

(1) If (level is okay) then (valve is nochange)
(2) If (level is low) then (valve is openfast)
(3) If (level is high) then (valve is closefast)
(4) If (level is okay) and (rate is positive) then (valve is closeslow)
(5) If (level is okay) and (rate is negative) then (valve is openslow)

Figure 18. The input GT2 membership functions for the variables ‘Level’ and ‘Rate’.
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Figure 19. The output GT2 membership function for variable ‘Valve’.

Table 3. RMSE results for the water tank fuzzy system controller.

RMSE

Fuzzy system Level= 0.5 Level= 0.4 Level= 0.3

GT2 FSs 0.4058 0.3262 0.2612
IT2 FSs 0.4172 0.5076 0.6010

4.2.2. Water Tank Controller Results
In the first simulation for the water tank GT2 fuzzy system, we considered different refer-
ence values for the water tank level (0.5, 0.4 and 0.3). According to the results presented in
Table 3, the RMSE achieved by the GT2 fuzzy controller performed better than the IT2 FS.

4.3. TheWave Equation

An eigenfunction of thewave equation is amathematical model of how a disturbance trav-
els throughmatter [46]. If t is time and x and y are spatial coordinates with the units chosen
so that the wave propagation speed is equal to one, then the amplitude of a wave satisfies
the partial differential equation expressed as follows:

∂2u/∂t2 = ∂2u/∂x2 + ∂2u/∂y2. (48)

In the case of periodic time behavior, this gives solutions of the form

u(t, x, y) = sin(
√

λt)v(x, y), (49)

where

∂2v/∂x2 + ∂2v/∂y2 + λv = 0. (50)
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In (49) the parameter λ represents the eigenvalues and the functions v(x, y) are the
eigenfunctions or modes of vibration. They are determined by the physical properties,
the geometry and the boundary conditions of each particular situation. Any solution to
the wave equation can be expressed as a linear combination of these eigenfunctions.
The square roots of the eigenvalues are resonant frequencies. A periodic external driving

Figure 20. Surface obtained by the membrane function.

Figure 21. The inputs GT2 membership function for variables ‘X1’ and ‘X2’.
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force at one of these frequencies will generate an unboundedly strong response in the
medium.

4.3.1. ApproximateWave Equation with GT2 FS
In this case study we approximate the wave equation surface using a GT2 FS, the idea
is to compare our proposed fuzzy approach against those produced by the Membrane
function [45]. The surface obtained by the Membrane function is shown in Figure 20.

For the GT2 fuzzy approach, we used a Singleton Takagi–Sugeno fuzzy system model,
which was designed with two inputs and one output. The inputs (X1 and X2) are granu-
lated into three membership functions, and are defined by Gaussian primary membership
functions with uncertain mean and general bell-shaped secondary membership func-
tion (gaussmgbelltype2), as shown in Figure 21; the parameterization for these member-
ship functions are expressed in (41). The knowledge base of the GT2 FS is implemented
using nine fuzzy rules, which are characterized by the number of antecedents fuzzy sets
combined with the consequents fuzzy sets. The RMSE (0.0913) and correlation (0.9690)
obtained by the GT2 FSs with respect to the MATLAB R© Membrane function are pre-
sented in Table 4. The output surface obtained by the GT2 FS is shown in Figure 22
and we can note that this surface is very similar to that obtained in Figure 20; there-
fore, the parameterization approach proposed in this paper is a good way to design
a GT2 FS.

Table 4. RMSE and correlation coefficient results for the wave equation fuzzy
approximation.

Fuzzy system RMSE r

GT2 FSs 0.0913 0.9690

Figure 22. Surface of the wave equation using GT2 FS.
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5. Conclusion

In this paper, wehavepresented a newapproach for the parameterization of general type-2
fuzzy sets. With this approach, very few parameters are needed to build different mem-
bership function types. Examples were given of possible combinations between primary
and secondarymembership functions, and althoughonly a small amount of exampleswere
given, the concepts behind the proposed parameterization can easily be used to construct
any other combination of GT2 membership functions.

Illustrations were also presented for all given combinations of primary and secondary
membership functions, which demonstrate that the proposed parameterization can form
smooth GT2membership functions and these are recognizable since they are an extension
from IT2 membership functions.

The presented experimentation demonstrated that the use of the proposed parameter-
ization in several benchmark datasets is a good choice in designing general type-2 fuzzy
systems. Simulation results show that GT2 FSs achieved better prediction accuracy than IT2
FSs in the considered benchmark problems.
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