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STATISTICS | RESEARCH ARTICLE

Testing the mean of skewed distributions
applying the maximum likelihood estimator
I-Shiang Tzeng1,2,3§* and Li-Shya Chen4§

Abstract: The sample moment can be used to estimate the population third central
moment, μ3, in the Johnson’s modified t-statistic for skewed distributions. However,
moment estimator is non-unique and insufficient for the parameter of population.

In this paper, we display the maximum likelihood estimator (MLE) of μ3 in modified
t-statistic as parent distributions are asymmetrical. A Monte Carlo study shows that
the MLE procedure is more powerful than Student’s t-test and ordinary Johnson’s
modified t-test for a variety of positively skewed distributions with small sample
sizes.

Subjects: Science; Mathematics & Statistics; Medicine; Medicine, Dentistry, Nursing &
Allied Health; Medicine

Keywords: Johnson’s modified t-test; third central moment; statistical powers; student’s t-
test

1. Introduction
The central limit theorem is widely used when a random sample is drawn from a non-normal
population with mean μ and variance σ2. It assumes that the mean μ of a population is to be
estimated. In practice, a random sample of size n would typically be taken from the population,
and then the sample mean would be computed to estimate μ. The sample mean can be defined as
a random variable. Then, it varies from sample to sample and cannot be deterministically pre-

dicted. The notation �X is used when the sample mean is defined as a random variable, and Xi for
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the corresponding values where i ¼ 1;2; :::; n. The random variable �X follows a sample distribution
with mean μ�X and standard deviation σ�X. According to the central limit theorem, the sample mean
�X can be approximated by a normal distribution with mean μ�X=μ and standard deviation σ�X=σ=

ffiffiffi
n

p

for a large sample size n, where σ is the standard deviation of the population. By this theorem, the

test statistic
ffiffiffi
n

p ð�X � μÞ=σ can be used to test the hypothesis that the mean of a non-normal
population is μ when it is known that standard deviation is σ and the sample size is large.

The Student’s t-test was proposed to overcome the inefficiency of the z-test with small
samples. The sample variance S2 is used for the population variance if σ2 is unknown. The

Student’s t-test (i.e.,
ffiffiffi
n

p ð�X � μÞ=S) can be used for hypotheses where the sample standard
deviation S is used to estimate σ. It performs well when σ is finite and the sample size is large.

It is now assumed that the distribution of a random variable, such as the random variable �X,
should be studied. The first two moments (i.e., the mean and the variance) can be obtained as a
step toward understanding the distribution, and the unbiased estimators for the mean and the
variance can be obtained from a random sample. However, there are several situations that
require higher-order moments. For a scenario where the sample size is small and the parent
distribution is asymmetrical (e.g., Gamma distribution), Johnson (1978) proposed a modified
procedure for the Student’s t-test using the first few terms of the inverse Cornish–Fisher expan-
sion, proposed by Cornish and Fisher (1937), as follows:

t ¼ ð�X � μÞ þ μ3
6σ2n

þ μ3
3σ4

ð�X � μÞ2
h i S2

n

� ��1=2

;

where μ3 is the population third central moment. It can be estimated by the sample third central
moment, denoted by μ̂3. When the hypothesis H0 : μx ¼ μ0 is stated, the ordinary Johnson’s
modified t-statistic is

t1 ¼ ð�X � μ0Þ þ
μ̂3

6S2n
þ μ̂3
3S4

ð�X � μ0Þ2
� �

S2

n

� ��1=2

;

where μ̂3 ¼ ∑
n

i¼1
ðXi � �XÞ3=n.

Under violations of both normality and variance homogeneity, Cressie and Whitford (1986)
examined the problem of using the conventional Student’s t-test with inappropriate standard
deviation. The Welch's t-test is most frequently used to tackle the violations of classical assump-
tions. Alternatively, this situation can be improved by correcting the t variables using transforma-
tions, such as Johnson’s transformation and Hall’s transformation proposed by Hall (1983).

For the asymmetric distribution of upper-tailed tests, Sutton (1993) verified that Johnson’s
t1-test could be used, as Student’s t-test lacks statistical power. Furthermore, it reduces the
probability of Type I error. However, Johnson’s t1-test may yield incorrect results if skewness is
inflated and the sample size is small.

To test the mean of a positively skewed distribution with the upper-tailed test, Chen (1995)
conducted a novel testing procedure using the Edgeworth expansion under several positively
skewed distributions, such as Gamma, Weibull, exponential, and lognormal. According to the
results of a simulation study, the new test statistic is more powerful than Student’s t-values and
Johnson’s t1-values regardless of which positively skewed distribution and critical value were
selected.

To estimate the mean of asymmetric distributions, Johnson (1978) proposed some modified t-
tests that can be widely applied to the original distributions, from normal distributions to asym-
metric distributions, for example, to exponential distributions with sample size as small as 13. In
several real situations, owing to the cost limitations of the sampling procedures, when the sample
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size is small, the deviation of the original distribution may be larger than that in Johnson’s study.
In this case, Johnson’s test may lack accuracy. To resolve this, Sutton (1993) proposed an
improved comprehensive test method to improve Johnson’s tail t-test. Chen (1995) proposed an
upper-tailed test method for the average of a positively skewed distribution. According to a Monte
Carlo study, Chen’s test proved to be more accurate than Johnson’s modified t-test and Sutton’s
compound test for various positively skewed distributions and small samples. Above related
studies used sophisticated mathematical expansion to improve the accuracy of Johnson’s test.

Diaconis and Efron (1983) proposed the time-consuming computer intensive method carried out
to evaluate the small-sample behavior of the modifications in terms of Type I error rate and
statistical power. However, relatively few studies have considered the statistical properties of
different estimators of μ3 in the ordinary Johnson’s modified t-statistic. In this study, the max-
imum likelihood estimator (MLE) of μ3 is proposed in such a modified t-statistic for asymmetrical
parent distributions. A Monte Carlo simulation is performed to examine the statistical power of the
MLE in the context of Johnson’s modified t-statistic for each scenario. It is demonstrated that this
procedure is more powerful than both Student’s t-test and ordinary Johnson’s modified t-test for a
variety of positively skewed distributions and small sample sizes.

2. MLE of μ3 for the upper-tailed test
Skewness can be used to measure the level of asymmetry of a probability distribution. The
skewness coefficient can be positive or negative and is denoted by γ3. It has a greater effect on
a t-type variate compared with the kurtosis coefficient. Neyman and Pearson (1928) and Pearson
(1928) demonstrated that the power of the short right tail in the sampling distribution of the
Student’s t-test is small for upper-tailed tests of the population mean. Sutton (1993) performed a
Monte Carlo analysis to examine the statistical properties of Student’s t-test and Johnson’s
modified t-test for skewed distributions. Sutton demonstrated that the power performance of
Johnson’s modified t-test was better than that of the conventional t-test in several cases. When
skewness was high, the Type I error was inaccurate for both tests, as the sample size was not
sufficiently large. However, both procedures indicated a tendency for greater accuracy (in the Type
I error) with an increase in sample size and a decrease in skewness.

In a field such as statistics, all inventions are necessarily conceptual. MLEs are arguably the
most valuable invention in the history of statistics. Although MLEs are often mathematically non-
trivial, and the likelihood equations are tractable only if they are specifically based on a given
distribution, MLEs are still widely used in a large number of models. In general, maximum like-
lihood estimation can also be a different numerical application. This study begins with a familiar
model, namely, the exponential family, as it is relatively simple from a computational perspective.
The definition of the exponential family is as follows:

Definition 2.1. Let fðxjθÞ ¼ exp QðθÞTðxÞ þ cðθÞ þ hðxÞf g; where θ 2 Ω : Suppose f is a probability
mass function (or probability density function) that belongs to the one-parameter exponential
family with natural parameter space Ω where QðθÞ is called the natural parameter of f , TðxÞ is
called the natural statistic, cðθÞ is the cumulant generating function, and hðxÞ is the carrier density.

For simplicity, it is assumed that the shape parameters are known. Moreover, for complete-
ness, the theorem on MLEs for f belongs to the exponential family with parameter θ is stated as
follows:

Theorem 2.1. Let X1; X2; :::;Xn
iid
, fðxjθÞ ¼ exp QðθÞTðxÞ þ cðθÞ þ hðxÞf g: If θ̂ is the MLE of the para-

meter θ, then Q 0ðθ̂Þ ∑
n

i¼1
TðxiÞ þ nc 0ðθ̂Þ ¼ 0:
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Here, three positively skewed distributions are considered: (i) a Weibull distribution, (ii) a
Gamma distribution, and (iii) an exponential distribution. Of course, they belong to the one-
parameter exponential family. The MLEs of the unknown parameters of these distributions are,
according to Theorem 2.1, as follows.

Remark: (i) Weibull distribution (a; b)
(1) The density of a Weibull distribution with variable xi, where i ¼ 1; 2; :::; n, is given by

fðxija; bÞ ¼ abxb�1
i exp �axbi

� �
¼ exp logabþ log xb�1

i � axbi
n o

;

where 0< xi <1 and a; b>0. Furthermore, QðaÞ ¼ �a; TðxiÞ ¼ xbi ; and cðaÞ ¼ logab, where b is
known.

(2) The MLE of a satisfies Q 0ðâÞ ∑
n

i¼1
TðxiÞ þ nc 0ðâÞ ¼ � ∑

n

i¼1
xbi þ n

â ¼ 0. Then â ¼ n= ∑
n

i¼1
xbi :

Remark: (ii) Gamma distribution (λ; r)
(1) The density of a Gamma distribution with variable xi, where i ¼ 1; 2; :::; n, is given by

fðxijλ; rÞ ¼ λ
ΓðrÞ ðλxiÞr�1e�λxi ¼ exp log λr

ΓðrÞ þ log xr�1
i � λxi

n o
;

where 0< xi <1and r; λ>0. Furthermore, QðλÞ ¼ �λ; TðxiÞ ¼ xi; and cðλÞ ¼ log λr

ΓðrÞ , where r is
known.

(2) The MLE of λ satisfies Q 0ðλ̂Þ ∑
n

i¼1
TðxiÞ þ nc 0ðλ̂Þ ¼ � ∑

n

i¼1
xi þ n

λ ¼ 0. Then λ̂ ¼ n= ∑
n

i¼1
xi:

Remark: (iii) Exponential distribution (λ)

(1) The density of an exponential distribution with variable xi, where i ¼ 1; 2; :::; n, is given by

fðxijλÞ ¼ λe�λxi ¼ exp log λ� λxif g;
where 0< xi <1 and λ>0. Furthermore, QðλÞ ¼ �λ; TðxiÞ ¼ xi; and cðλÞ ¼ log λ.

(2) The MLE of λ satisfies Q 0ðλ̂Þ ∑
n

i¼1
TðxiÞ þ nc 0ðλ̂Þ ¼ � ∑

n

i¼1
xi þ nr

λ̂
¼ 0. Then λ̂ ¼ nr= ∑

n

i¼1
xi:

According to the invariance property of MLE, it is convenient to derive the MLE of μ3, denoted as
μ̂�3 (see Appendix A) in each case. Then, the test statistic is

t2 ¼ ð�X � μÞ þ μ̂�3
6S2n

þ μ̂�3
3S4

ð�X � μÞ2
� �

S2

n

� ��1=2

:

The decision rule for testing H0 : μx ¼ μ0 versus H1 : μx > μ0 is to reject H0 when t2 > tn�1; α under a
significance level of α. The theoretical derivation of t2 is provided in Appendix B.

3. Monte Carlo simulation
Chen (1995) proposed a new procedure for the upper-tailed test of the means of positively skewed
distributions. Monte Carlo analysis can be used to investigate the new procedure’s statistical
properties in each case. Here, random samples are generated from positively skewed distributions
with a range of γ3 values. These distributions are the Weibull (a ¼ 1; b ¼ 2), Gamma
(λ ¼ 1; r ¼ 5:3), Gamma (λ ¼ 1; r ¼ 4), Gamma (λ ¼ 1; r ¼ 2:3), Gamma (λ ¼ 1; r ¼ 1:5), Gamma
(λ ¼ 1; r ¼ 1:2) and exponential (λ ¼ 1) corresponding to the γ3 values are 0.63, 0.87, 1.00, 1.32,
1.63, 1.83, and 2.00, respectively.

It should be noted that studies on test procedures use Student’s t-test (t) and Johnson’s modified
t-test (t1; t2). For all tests, the rejection regions are based on the t-distribution. The notation of the
parameters of the distribution is consistent with that in Mood, Graybill, and Boes (1974). In this
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study, Monte Carlo samples of size 100,000 were generated for each simulation. The comparisons of
the tests are based on the same conditions (i.e., sample size) to calculate the Type I error rate and

the statistical power. For upper-tailed tests, let μ0 ¼ μx � kσx=
ffiffiffi
n

p
, where μx and σx are the true mean

and standard deviation, respectively, and k= 0.5, 1.0, 1.5, 2.0, 2.5 for each scenario.

4. Simulation results
Tables 1 and 2 show the empirical results of the Type I error rates for Student’s t-test (the number
at the top of each set) and Johnson’s modified t-test (t1; t2 are the numbers in the middle and
bottom of each set, respectively). The procedure indicates a tendency for greater accuracy of Type
I error rates when the sample size increases and skewness decreases. It is evident that the Type I
error rates of Student’s t-test may differ at significant levels of 0.01 and 0.05.

It should be noted that when the skewness coefficient is less than 2.00 and n ¼ 20, the Type I
error rates can be approximately doubled if α ¼ 0:01 for testing t and t1. Furthermore, they can be
approximately 50% larger if α ¼ 0:05. However, the Type I error rate for t2 indicates a slight
inflation at the significant level of 0:01 or 0:05 when skewness is not severe and the sample size
is as small as 20. The inflation of the Type I error rate increases as the sample size increases.

Table 1. Comparison of type I error rates for student’s t-test and Johnson’s modified t-tests for
upper-tailed rejection areas when H0 : μx ¼ μ0 is true at α ¼ 0:01

Distribution
(parameters)

n = 20 n = 40 n = 80 n = 160 n = 320

Weibull (1, 2) γ3= 0.63

t statistic .005 .007 .008 .009 .008

t1 statistic .006 .009 .010 .011 .009

t2 statistic .012 .012 .012 .012 .010

Gamma (1, 5.3) γ3= 0.87

t statistic .004 .004 .007 .006 .007

t1 statistic .007 .007 .010 .009 .009

t2 statistic .014 .011 .011 .008 .009

Gamma (1, 4) γ3= 1.00

t statistic .004 .005 .006 .006 .008

t1 statistic .006 .008 .009 .009 .010

t2 statistic .013 .013 .011 .010 .011

Gamma (1, 2.3) γ3= 1.32

t statistic .002 .003 .005 .006 .007

t1 statistic .005 .007 .008 .009 .008

t2 statistic .016 .012 .011 .011 .009

Gamma (1, 1.5) γ3= 1.63

t statistic .002 .003 .004 .005 .006

t1 statistic .005 .007 .008 .009 .010

t2 statistic .017 .014 .011 .010 .010

Gamma (1, 1.2) γ3= 1.83

t statistic .001 .002 .003 .005 .005

t1 statistic .002 .004 .009 .008 .009

t2 statistic .023 .015 .013 .010 .008

Exponential γ3= 2.00

t statistic .001 .002 .003 .005 .005

t1 statistic .003 .007 .008 .010 .008

t2 statistic .022 .018 .014 .012 .009
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Tables 3 and 4 show the comparison of the power of Student’s t-test, Johnson’s modified t1-test,
and Johnson’s modified t2-test using the t-critical point (tn�1; α). In all the cases, as skewness and
the value of k vary, the statistical power of Johnson’s modified t2-test is higher than that of the
Student’s t-test and Johnson’s modified t1-test.

5. Demonstration using real data
The real data used here to illustrate the t-tests are from an experiment to determine the nitrogen
binding capacity of laboratory mice (Dolkart, Halpern, & Perlman, 1971). The design was set by a
control group of 20 normal mice and an experimental group of 19 diabetic mice. Both groups were
treated with bovine serum albumin (BSA) for 28 days. The amount of BSA nitrogen bound was
measured on the 29th day with micrograms per milliliter of undiluted mouse serum. The two group
data were used to test whether the average amount of BSA nitrogen bound in the normal control
group is better than that in the experimental group (known average binding capacity is 112.72).
Both tests t1 and t2 were used to test H0 : μnormal ¼ 112:72 against H1 : μnormal >112:72. In a
demonstration of laboratory mice data, we have γ3 = 1.504 and kurtosis = 1.976 for the binding
capacity of the experimental group. The goodness-of-fit test for the distribution fitting was used,

Table 2. Comparison of type I error rates for Student’s t-test and Johnson’s modified t-tests for
upper-tailed rejection areas when H0 : μx ¼ μ0 is true at α ¼ 0:05

Distribution
(parameters)

n = 20 n = 40 n = 80 n = 160 n = 320

Weibull (1, 2) γ3= 0.63

t statistic .036 .042 .043 .044 .050

t1 statistic .042 .048 .050 .048 .054

t2 statistic .051 .051 .050 .049 .054

Gamma (1, 5.3) γ3= 0.87

t statistic .031 .034 .036 .040 .045

t1 statistic .041 .045 .045 .047 .050

t2 statistic .053 .049 .047 .048 .050

Gamma (1, 4) γ3= 1.00

t statistic .034 .035 .040 .041 .047

t1 statistic .045 .047 .048 .049 .052

t2 statistic .054 .053 .049 .050 .052

Gamma (1, 2.3) γ3= 1.32

t statistic .026 .029 .035 .039 .043

t1 statistic .038 .043 .047 .049 .049

t2 statistic .057 .052 .049 .050 .049

Gamma (1, 1.5) γ3= 1.63

t statistic .022 .027 .033 .034 .040

t1 statistic .037 .042 .048 .045 .049

t2 statistic .057 .055 .054 .047 .050

Gamma (1, 1.2) γ3= 1.83

t statistic .018 .027 .032 .036 .037

t1 statistic .032 .044 .048 .049 .048

t2 statistic .066 .056 .052 .051 .049

Exponential γ3= 2.00

t statistic .018 .026 .031 .035 .039

t1 statistic .033 .044 .047 .049 .048

t2 statistic .066 .059 .054 .053 .050

Tzeng & Chen, Cogent Mathematics & Statistics (2019), 6: 1588191
https://doi.org/10.1080/25742558.2019.1588191

Page 6 of 13



and the result (p-value = 0.426) indicates that there is no significant evidence to reject the null
hypothesis. This implies that the experimental group data are from the exponential distribution.
The MLE of μ3 for t2 is considered under the exponential distribution assumption. Then, the data
were tested by each Johnson’s t-test, and t1=2.56 and t2=3.20 are obtained. The values of t1 and t2
should be compared with the critical value in Student’s t tables for 19 degrees of freedom at a
significance level of 5% (i.e., t19;0:05). It was found that the data supported H1 rather than H0, and
thus it is concluded that the normal mice have a significantly higher binding capacity than the
diabetic mice at the critical point t19;0:05=1.729. The p-values of tests were also calculated: 0.006
and 0.001 corresponding respectively to t1=2.56 and t2=3.20. The p-value of t2 represents a more
significant impact on the dataset than that of t1.

6. Conclusion and future work
This study was concerned with the MLE of μ3 in Johnson’s modified t-test and the t2-test of the
means of positively skewed distributions. An empirical study indicated that the t2-test is accurate
in terms of the Type I error rate when the sample size is small and skewness is not severe.

Table 3. Power comparison of student’s t-test and Johnson’s modified t-tests for upper-tailed
rejection areas when n ¼ 20 and H1 : μx ¼ μ0 þ kσx=

ffiffiffi
n

p
is true at α ¼ 0:01

Distribution
(parameters)

k = .5 k = 1.0 k = 1.5 k = 2.0 k = 2.5

Weibull (1, 2) γ3= 0.63

t statistic .021 .055 .142 .282 .484

t1 statistic .027 .070 .176 .344 .568

t2 statistic .047 .102 .224 .391 .591

Gamma (1, 5.3) γ3= 0.87

t statistic .017 .050 .135 .273 .496

t1 statistic .025 .073 .189 .362 .604

t2 statistic .048 .115 .253 .427 .645

Gamma (1, 4) γ3= 1.00

t statistic .013 .044 .123 .272 .487

t1 statistic .022 .073 .180 .377 .618

t2 statistic .048 .122 .249 .442 .659

Gamma (1, 2.3) γ3= 1.32

t statistic .010 .037 .109 .259 .503

t1 statistic .022 .073 .191 .405 .669

t2 statistic .056 .137 .280 .491 .720

Gamma (1, 1.5) γ3= 1.63

t statistic .008 .028 .096 .249 .495

t1 statistic .019 .064 .188 .432 .721

t2 statistic .060 .142 .304 .529 .760

Gamma (1, 1.2) γ3= 1.83

t statistic .007 .027 .089 .246 .509

t1 statistic .018 .066 .199 .438 .754

t2 statistic .069 .164 .322 .550 .790

Exponential γ3= 2.00

t statistic .006 .025 .084 .247 .515

t1 statistic .017 .070 .201 .468 .778

t2 statistic .074 .170 .344 .584 .803
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Moreover, the t2-test is more powerful than the t-test and t1-test given that the sampling
distributions are known.

When skewed or known distributions are used, the parameters can be inferred by the MLE
method more effectively than by moment estimators, as expected for known distributions. In
this study, the distributions were selected with shape and scale parameters, and it was assumed
that the shape parameters were known for simplicity in the setting of skewness in the simulations.

In practice, Johnson’s modified t-test is preferable when the distribution is unknown, except for
its asymmetry. Therefore, the population third central moment (i.e., μ3) is estimated by the sample
third central moment in the calculation of Johnson’s modified t-test (i.e., frequentist) rather than
by distribution-based estimators (such as MLEs). However, one may calculate the skewness
coefficient of the empirical data and test them for distribution-based fit before applying the
t2-test. It is suggested that both the t1 and t2 tests be performed and their results be compared
for minimally skewed empirical data. Moreover, the t2-statistic greatly depends on the shape of the
parent distribution through the goodness of fit test. Furthermore, it involves the scale for the MLE

Table 4. Power comparison of student’s t-test and Johnson’s modified t-tests for upper-tailed
rejection areas when n ¼ 20 and H1 :μx ¼ μ0 þ kσx=

ffiffiffi
n

p
is true at α ¼ 0:05

Distribution
(parameters)

k = .5 k = 1.0 k = 1.5 k = 2.0 k = 2.5

Weibull (1, 2) γ3= 0.63

t statistic .102 .218 .393 .622 .799

t1 statistic .115 .246 .432 .664 .837

t2 statistic .137 .270 .457 .675 .839

Gamma (1, 5.3) γ3= 0.87

t statistic .094 .208 .409 .623 .811

t1 statistic .116 .245 .468 .680 .852

t2 statistic .144 .280 .496 .701 .859

Gamma (1, 4) γ3= 1.00

t statistic .084 .204 .396 .626 .820

t1 statistic .109 .252 .460 .694 .867

t2 statistic .137 .287 .497 .715 .874

Gamma (1, 2.3) γ3= 1.32

t statistic .077 .198 .390 .641 .855

t1 statistic .107 .262 .478 .721 .905

t2 statistic .146 .309 .523 .748 .910

Gamma (1, 1.5) γ3= 1.63

t statistic .071 .175 .382 .642 .867

t1 statistic .110 .252 .484 .751 .924

t2 statistic .159 .312 .534 .775 .930

Gamma (1, 1.2) γ3= 1.83

t statistic .071 .181 .383 .653 .886

t1 statistic .109 .263 .502 .764 .945

t2 statistic .164 .338 .557 .792 .946

Exponential γ3= 2.00

t statistic .064 .176 .387 .669 .892

t1 statistic .110 .264 .518 .790 .950

t2 statistic .172 .340 .582 .809 .950

Tzeng & Chen, Cogent Mathematics & Statistics (2019), 6: 1588191
https://doi.org/10.1080/25742558.2019.1588191

Page 8 of 13



of the parent distribution. To derive a robust and powerful test, future studies should examine
another estimator for μ3 of Johnson’s modified t-test with fewer restrictions.
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Appendix A

(i) Weibull (a; b)

First, initial moments can be calculated using EðXiÞ ¼ 1
a

	 
i=bΓ i
b þ 1
	 


; i ¼ 1;2; 3:

Second, μ3 ¼ EðX � μÞ3 ¼ EðX3Þ � 3EðX2ÞEðXÞ þ 2E3ðXÞ

¼ 1
a

� �3=b

Γ
3
b
þ 1

� �
� 3Γ

2
b
þ 1

� �
Γ

1
b
þ 1

� �
þ 2Γ3 1

b
þ 1

� �� �
:

Hence, MLE of μ3, μ
�
3 is 1

â

	 
3=b Γ 3
b þ 1
	 
� 3Γ 2

b þ 1
	 


Γ 1
b þ 1
	 
þ 2Γ3 1

b þ 1
	 
� �

;

where â is MLE of a

(ii) Gamma (λ; r)

First, initial moments can be calculated using EðXiÞ ¼ rðrþ1Þ���ðrþi�1Þ
λi

; i ¼ 1;2; 3:

Second, μ3 ¼ EðX � μÞ3 ¼ EðX3Þ � 3EðX2ÞEðXÞ þ 2E3ðXÞ ¼ 2r
λ3
:

Hence, MLE of μ3, μ
�
3 is 2r

λ̂
3 ; where λ̂ is MLE of λ

(iii) Exponential (λ)

First, initial moments can be calculated using EðXiÞ ¼ i!
λi
;i ¼ 1;2; 3:
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Second, μ3 ¼ EðX � μÞ3 ¼ EðX3Þ � 3EðX2ÞEðXÞ þ 2E3ðXÞ ¼ 2
λ3

Hence, MLE of μ3, μ
�
3 is 2

λ̂
3 ; where λ̂ is MLE of λ

Appendix B

Derivation of κ and δ in t2

Let �X is defined as a random variable follows a sample distribution with mean μ�X=μ and standard

deviation σ�X=σ=
ffiffiffi
n

p
for a large sample size n, where σ is the standard deviation of population. First,

we consider the Student’s t-test

t ¼
ffiffiffi
n

p �X � μ
	 

S

;

where the sample standard deviation S is used to estimate σ. According to Cornish–Fisher expan-
sion under the assumption of all moments of a population exists; then

CF �X
	 
 ¼ μþ σ�X� þ

μ3;�X
6σ2�X

ð�2 � 1Þ þ Oðn�3
2Þ;

where � is defined as a random variable follows a standard normal distribution. Let μ3 is defined as

the population third central moment and μ3;�X is the third central moment of �X which equal to

μ3=n
2; then

CF �X
	 
 ¼ μþ σffiffiffi

n
p � þ μ3

6nσ2
ð�2 � 1Þ þ Oðn�3

2Þ;

CF tð Þ ¼ � þ μ3;�X
6σ3�X

ffiffiffi
n

p þ σ�Xffiffiffi
n

p κ

 !
�2 � μ3;�X

6σ3�X
ffiffiffi
n

p þ δ
ffiffiffi
n

p
σ�X

� κσ�Xffiffiffi
n

p � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ4;�X � σ4�XÞ

nσ4�X

vuut
2
4

3
5�η:

The Cornish–Fisher expansion of S2 which ignoring higher-order terms is

CF S2
	 
 ¼ σ2�X þ

ffiffiffiffiffiffiffiffiffiffiffiffi
μ4;�X�σ4�X

n

q� �
η ¼ σ2�X þ σ2�X

ffiffiffiffiffiffiffiffiffiffiffiffi
μ4;�X�σ4�X
nσ4�X

r� �
η ¼ σ2�X 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
μ4;�X�σ4�X
nσ4�X

r� �
η

� �
: Let η ¼ ρ� þ ��, �� be a

normal variable independent of �. Replacing the values of �X and S2 by their respective expansions

and rewriting η ¼ ρ� þ ��, where ρ ¼ μ3;�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2�Xðμ4;�X�σ4�XÞ

p is the correlation between �X and S2, the Cornish–

Fisher expansion of t is

CF tð Þ ¼ � þ μ3;�X
6σ3�X

ffiffiffi
n

p þ σ�Xffiffiffi
n

p κ

 !
�2 � μ3;�X

6σ3�X
ffiffiffi
n

p þ δ
ffiffiffi
n

p
σ�X

� κσ�Xffiffiffi
n

p

� 1
2

μ4;�X � σ4�X

� �
nσ4�X

2
4

3
5 �2ρþ ���
	 


;

where ρ ¼ μ3;�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2�Xðμ4;�X�σ4�XÞ

p and μ4;�X is the fourth central moment of �X

Substitute ρ ¼ μ3;�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2�Xðμ4;�X�σ4�XÞ

p to CF tð Þ, then

CF tð Þ ¼ � þ μ3;�X
6σ3�X

ffiffiffi
n

p þ σ�Xffiffiffi
n

p κ

 !
�2 � μ3;�X

6σ3�X
ffiffiffi
n

p þ δ
ffiffiffi
n

p
σ�X

� κσ�Xffiffiffi
n

p
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� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ4;�X � σ4�XÞ

nσ4�X

vuut
2
4

3
5 �2

μ3;�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2�Xðμ4;�X � σ4�XÞ

q þ ���

0
B@

1
CA

¼ � þ μ3;�X
6σ3�X

ffiffiffi
n

p þ σ�Xffiffiffi
n

p κ

 !
�2 þ δ

ffiffiffi
n

p
σ�X

� μ3;�X
6σ3�X

ffiffiffi
n

p � κσ�Xffiffiffi
n

p

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ4;�X � σ4�XÞ

nσ4�X

vuut
2
4

3
5�2 μ3;�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2�Xðμ4;�X � σ4�XÞ
q � 1

2

μ4;�X � σ4�X

� �
nσ4�X

2
4

3
5���

¼ � þ μ3;�X
6σ3�X

ffiffiffi
n

p þ σ�Xffiffiffi
n

p κ � μ3;�X
2σ3�X

ffiffiffi
n

p
 !

�2 þ δ
ffiffiffi
n

p
σ�X

� μ3;�X
6σ3�X

ffiffiffi
n

p � κσ�Xffiffiffi
n

p

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ4;�X � σ4�XÞ

nσ4�X

vuut
2
4

3
5���

¼ � þ σ�Xffiffiffi
n

p κ � μ3;�X
3σ3�X

ffiffiffi
n

p
 !

�2 þ δ
ffiffiffi
n

p
σ�X

� μ3;�X
6σ3�X

ffiffiffi
n

p � κσ�Xffiffiffi
n

p

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ4;�X � σ4�XÞ

nσ4�X

vuut
2
4

3
5���:

Select κ and δ through constraints as follows

σ�Xffiffiffi
n

p κ � μ3;�X
3σ3�X

ffiffiffi
n

p ¼ 0and
δ
ffiffiffi
n

p
σ�X

� μ3;�X
6σ3�X

ffiffiffi
n

p � κσ�Xffiffiffi
n

p ¼ 0

κ ¼ μ3;�X
3σ3�X

ffiffiffi
n

p �
ffiffiffi
n

p
σ�X

¼ μ3;�X
3σ4�X

:

Substitute κ ¼ μ3;�X
3σ4�X

to constant term of CF tð Þ; then

δ
ffiffiffi
n

p
σ�X

� μ3;�X
6σ3�X

ffiffiffi
n

p � μ3;�X
3σ4�X

� σ�Xffiffiffi
n

p ¼ 0

δ
ffiffiffi
n

p
σ�X

� μ3;�X
6σ3�X

ffiffiffi
n

p � μ3;�X
3σ3�X

ffiffiffi
n

p ¼ 0

δ
ffiffiffi
n

p
σ�X

� μ3;�X
2σ3�X

ffiffiffi
n

p ¼ 0

δ ¼ μ3;�X
2σ3�X

ffiffiffi
n

p � σ�Xffiffiffi
n

p ¼ μ3;�X
2σ2�Xn

:

Hence, according to Johnson’s method to modify t by �X and S2 as
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t ¼
�X � μ
	 
þ δþ κ �X � μ

	 
2 � σ2�X
n


 �
Sffiffi
n

p
;

where δ and κ related with μ3;�X, σ
2
�X, and n.

And δ ¼ μ3;�X
2σ2�Xn

, κ ¼ μ3;�X
3σ4�X

, then

t ¼
�X � μ
	 
þ μ3;�X

2σ2�Xn
þ μ3;�X

3σ4�X

�X � μ
	 
2 � σ2�X

n


 �
Sffiffi
n

p
:

In our study, let the modified t variable of t as follows:

t ¼
�X � μ
	 
þ μ3;�X

2σ2�Xn
þ μ3;�X

3σ4�X

�X � μ
	 
2 � μ3;�X

3σ4�X
� σ

2
�X
n

Sffiffi
n

p

¼
�X � μ
	 
þ μ3;�X

2σ2�Xn
� μ3;�X

3σ2�Xn
þ μ3;�X

3σ4�X

�X � μ
	 
2

Sffiffi
n

p

¼
�X � μ
	 
þ μ3;�X

6σ2�Xn
þ μ3;�X

3σ4�X

�X � μ
	 
2

Sffiffi
n

p

¼ �X � μ
	 
þ μ3;�X

6σ2�Xn
þ μ3;�X

3σ4�X
�X � μ
	 
2" #

� S2

n

� ��1
2

:

Let δ ¼ μ�3
2σ2n , κ ¼

μ�3
3σ4 , then we represent the above statistic as follows:

t2 ¼ �X � μ
	 
þ μ�3

6σ2n
þ μ�3
3σ4

�X � μ
	 
2� �

� S2

n

� ��1
2

:

Use MLE of μ̂�3, σ̂
2 to estimate μ̂�3, σ

2, respectively. Then

t2 ¼ �X � μ
	 
þ μ̂�3

6σ̂2n
þ μ̂�3
3σ̂4

�X � μ
	 
2� �

� S2

n

� ��1
2

:

We know MLE of σ̂2 is equal to
∑
n

i¼1
xi��xð Þ2

n ¼ S2. And then

t2 ¼ �X � μ
	 
þ μ̂�3

6S2n
þ μ̂�3
3S4

�X � μ
	 
2� �

� S2

n

� ��1
2

:

To demonstrate the use of the t2 variable in testing of real data, we assume to test the hypothesis
H0 : μ ¼ μ0 against H1 : μ> μ0. The reject criteria could be

�X � μ
	 
þ μ̂�3

6S2n
þ μ̂�3
3S4

�X � μ
	 
2� �

� S2

n

� ��1
2

> tn�1;α;

where the critical value, tn�1;α is obtained from the Student’s t-distribution.
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